177 research outputs found

    Auger de-excitation of metastable molecules at metallic surfaces

    Full text link
    We study secondary electron emission from metallic surfaces due to Auger de-excitation of diatomic metastable molecules. Our approach is based on an effective model for the two active electrons involved in the process -- a molecular electron described by a linear combination of atomic orbitals when it is bound and a two-center Coulomb wave when it is not and a metal electron described by the eigenfunctions of a step potential -- and employs Keldysh Green's functions. Solving the Dyson equation for the retarded Green's function by exponential resummation we are able to treat time-nonlocal self-energies and to avoid the wide-band approximation.Results are presented for the de-excitation of \NitrogenDominantMetastableState\ on aluminum and tungsten and discussed in view of previous experimental and theoretical investigations. We find quantitative agreement with experimental data for tungsten indicating that the effective model captures the physics of the process quite well. For aluminum we predict secondary electron emission due to Auger de-excitation to be one to two orders of magnitude smaller than the one found for resonant charge-transfer and subsequent auto-detachment.Comment: 15 pages, 9 figures, revised version using an improved single-electron basi

    Any decline in prostate‐specific antigen levels identifies survivors scheduled for prostate‐specific membrane antigen‐directed radioligand therapy

    Get PDF
    Background Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) is increasingly incorporated in the therapeutic algorithm of patients with metastatic castration-resistant prostate cancer (mCRPC). We aimed to elucidate the predictive performance of early biochemical response for overall survival (OS). Materials and Methods In this bicentric analysis, we included 184 mCRPC patients treated with 177^{177}Lu-PSMA RLT. Response to treatment was defined as decrease in prostate-specific antigen (PSA) levels 8 weeks after the first cycle of RLT (any decline or >50% according to Prostate Cancer Working Group 3). OS of responders and nonresponders was then compared using Kaplan–Meier curves and log-rank comparison. Results A total of 114/184 patients (62.0%) showed any PSA decline (PSA response >50%, 55/184 [29.9%]). For individuals exhibiting a PSA decline >50%, OS of 19 months was significantly longer relative to nonresponders (13 months; hazard ratio of death [HR] = 0.64, 95% confidence interval [95% CI] = 0.44–0.93; p = 0.02). However, the difference was even more pronounced for any PSA decline, with an OS of 19 months in responders, but only 8 months in nonresponders (HR = 0.39, 95% CI = 0.25–0.60; p < 0.001). Conclusions In mCRPC patients scheduled for RLT, early biochemical response was tightly linked to prolonged survival, irrespective of the magnitude of PSA decline. As such, even in patients with PSA decrease of less than 50%, RLT should be continued

    The contribution of Citizens’ Observatories to validation of satellite‐retrieved soil moisture products

    Get PDF
    The GROW Observatory (GROW) will create a sustainable citizen platform and community to generate, share and utilise information on land, soil and water resources at a resolution hitherto not previously considered. The European Space Agency’s Sentinel‐1 is the first mission capable of providing high‐resolution soil moisture information, but a proper validation of Sentinel data remains a challenge given the scarcity of available in situ reference measurements. Establishment of a dense network of in situ measurement can bridge the gap in spatial resolution between in situ and satellite‐based soil moisture measurements enabling validation and calibration of ground and remotely measured soil moisture observations. The potential exists to answer scientific questions including the validity of satellite data, the impact of climate change on land management thus supporting the needs of growers and integrating citizen and scientific research to be more directly applicable and relevant

    Early biochemical and radiographic response after one cycle of [177Lu]Lu-PSMA I&T radioligand therapy in metastatic castration-resistant prostate cancer patients

    Get PDF
    Purpose The aim of this study was to investigate very early radiographic PSMA PET response after one cycle of [177Lu]Lu-PSMA I&T radioligand therapy (RLT) of metastatic castration-resistant prostate cancer (mCRPC) and to assess its role in predicting overall response and survival. Methods This retrospective study enrolled 40 mCRPC patients who were treated with a median of 3 (2–9) [177Lu]Lu-PSMA I&TRLT cycles. Biochemical response was based on the relative change of serum PSA according to PCWG3 criteria, while radiographic response referred to the relative change of PSMA-derived total viable tumor volumes expressed as total lesion PSMA (TLP). Results After one cycle of RLT, biochemical partial response (PR) was seen in 8/40 (20.0%), stable disease (SD) in 22/40 (55.0%), and progressive disease (PD) in 10/40 (25%) patients. In PSMA PET, very early molecular PR was observed in 12 (30.0%), SD in 19 (47.5%), and PD in 9 (22.5%) subjects. The PSA and TLP nadir were achieved after a median of 1 (1–5) and 2 (1–6) cycles, respectively. Nineteen (47.5%) patients showed overall biochemical PR, 11 (27.5%) had SD, and 10 (25%) experienced PD. In PSMA-directed PET, 4 patients experienced molecular complete response (CR), 24 (60.0%) had PR, 4 (10.0%) SD, and 8 (20.0%) PD. Early biochemical or radiographic response was not associated with longer overall survival (OS). Overall biochemical responders had a nearly signifcantly longer median OS (22.7 months) than non-responders (14.4 months, p=0.08). Early PSA progression was associated with shorter OS (12.2 months), compared to biochemical SD/PR (18.7 months, p=0.09). Conclusion In this retrospective cohort, there was no association between early PSMA PET radiographic response and overall survival; hence, treatment should not be prematurely discontinued. In contrast, early PSA progression after onecycle of [177Lu]Lu-PSMA I&T RLT was an indicator of overall progression and poor clinical outcome

    Delivery of non-viral naked DNA vectors to liver in small weaned pigs by hydrodynamic retrograde intrabiliary injection

    Full text link
    Hepatic gene therapy by delivering non-integrating therapeutic vectors in newborns remains challenging due to the risk of dilution and loss of efficacy in the growing liver. Previously we reported on hepatocyte transfection in piglets by intraportal injection of naked DNA vectors. Here, we established delivery of naked DNA vectors to target periportal hepatocytes in weaned pigs by hydrodynamic retrograde intrabiliary injection (HRII). The surgical procedure involved laparotomy and transient isolation of the liver. For vector delivery, a catheter was placed within the common bile duct by enterotomy. Under optimal conditions, no histological abnormalities were observed in liver tissue upon pressurized injections. The transfection of hepatocytes in all tested liver samples was observed with vectors expressing luciferase from a liver-specific promoter. However, vector copy number and luciferase expression were low compared to hydrodynamic intraportal injection. A 10-fold higher number of vector genomes and luciferase expression was observed in pigs using a non-integrating naked DNA vector with the potential for replication. In summary, the HRII application was less efficient (i.e., lower luciferase activity and vector copy numbers) than the intraportal delivery method but was significantly less distressful for the piglets and has the potential for injection (or re-injection) of vector DNA by endoscopic retrograde cholangiopancreatography

    Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection

    Get PDF
    Dendritic cells can capture and transfer retroviruses in vitro across synaptic cell-cell contacts to uninfected cells, a process called trans-infection. Whether trans-infection contributes to retroviral spread in vivo remains unknown. Here, we visualize how retroviruses disseminate in secondary lymphoid tissues of living mice. We demonstrate that murine leukemia virus (MLV) and human immunodeficiency virus (HIV) are first captured by sinus-lining macrophages. CD169/Siglec-1, an I-type lectin that recognizes gangliosides, captures the virus. MLV-laden macrophages then form long-lived synaptic contacts to trans-infect B-1 cells. Infected B-1 cells subsequently migrate into the lymph node to spread the infection through virological synapses. Robust infection in lymph nodes and spleen requires CD169, suggesting that a combination of fluid-based movement followed by CD169-dependent trans-infection can contribute to viral spread

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
    corecore